Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases
نویسندگان
چکیده
Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants.
منابع مشابه
SYNTHESIS, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg - 5Zn - 0.3Ca/nHA NANOCOMPOSITES
Recently, magnesium and its alloys have attracted great attention for use as biomaterial due to their good mechanical properties and biodegradability in the bio environment. In the present work, nanocomposites of Mg - 5Zn - 0.3Ca/ nHA were prepared using a powder metallurgy method. The powder of Mg, Zn and Ca were firstly blended, then four different mixtures of powders were prepared by adding ...
متن کاملA Review on the Semiconducting Behavior of Passive Films Formed on Mg Alloys by Mott–Schottky Analysis
Mg alloys have a vast usage where weight reduction is really significant since they do the features really well for materials of ultra-light weight. However, Mg is inherently a reactive metal and its alloys generally possess quite weak corrosion resistance that widely restricts their technological usages, especially in some rough service conditions. Despite, many investigations on the passive a...
متن کاملGrain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy
The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61) alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new interme...
متن کاملMg-Zr-Sr alloys as biodegradable implant materials.
Novel Mg-Zr-Sr alloys have recently been developed for use as biodegradable implant materials. The Mg-Zr-Sr alloys were prepared by diluting Mg-Zr and Mg-Sr master alloys with pure Mg. The impact of Zr and Sr on the mechanical and biological properties has been thoroughly examined. The microstructures and mechanical properties of the alloys were characterized using optical microscopy, X-ray dif...
متن کاملEFFECT OF ANNEALING ON MICROSTRUCTURE AND CORROSION PERFORMANCE OF ADB AND ALB ALLOYS
Microstructure and corrosion performance of admiralty brass (ADB) and aluminum brass (ALB) alloys after passing different annealing heat treatments were investigated using optical and scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), DC polarization measurements and electrochemical impedance spectroscopy (EIS). The results showed that heat tre...
متن کامل